
J Glob Optim (2007) 39:261–289
DOI 10.1007/s10898-007-9138-0

O R I G I NA L PA P E R

Parallelizing simulated annealing algorithms based
on high-performance computer

Ding-Jun Chen · Chung-Yeol Lee ·
Cheol-Hoon Park · Pedro Mendes

Received: 28 July 2005 / Accepted: 12 January 2007 / Published online: 20 February 2007
© Springer Science+Business Media B.V. 2007

Abstract We implemented five conversions of simulated annealing (SA) algorithm
from sequential-to-parallel forms on high-performance computers and applied them
to a set of standard function optimization problems in order to test their perfor-
mances. According to the experimental results, we eventually found that the tradi-
tional approach to parallelizing simulated annealing, namely, parallelizing moves in
sequential SA, difficultly handled very difficult problem instances. Divide-and-con-
quer decomposition strategy used in a search space sometimes might find the global
optimum function value, but it frequently resulted in great time cost if the random
search space was considerably expanded. The most effective way we found in identi-
fying the global optimum solution is to introduce genetic algorithm (GA) and build a
highly hybrid GA+SA algorithm. In this approach, GA has been applied to each cool-
ing temperature stage. Additionally, the performance analyses of the best algorithm
among the five implemented algorithms have been done on the IBM Beowulf PCs
Cluster and some comparisons have been made with some recent global optimization
algorithms in terms of the number of functional evaluations needed to obtain a global
minimum, success rate and solution quality.

Keywords Simulated annealing · Genetic algorithms · Parallel and distributed
processing ·Message-passing interface (MPI) · High-performance computing

D.-J. Chen (B) ·C.-Y. Lee · C.-H. Park
Department of Electrical Engineering and Computer Science, Korea Advanced Institute of
Science and Technology, Daejeon 305-701, Republic of Korea
e-mail: chen_dingjun@yahoo.com

P. Mendes
Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA

262 J Glob Optim (2007) 39:261–289

1 Introduction

Many application problems in engineering are formulated as optimization problems;
for example, in diverse disciplines such as physics, chemistry and molecular biology, the
optimization problem min f (

→
x), subject to only lower- and upper-bound constraints on

the variables, is frequently met. In order to solve such a type of optimization problems,
a large number of optimization methods have been developed. Some of deterministic
methods apply deterministic heuristics, such as modifying the search trajectory in tra-
jectory methods and adding penalties in penalty-based methods, to bring a search out
of a local minimum [1]. In general, these methods do not work well if the search space
is too large or the optimization function has many distinct local minima. In the last
20 years, numerous stochastic optimization algorithms have emerged as a powerful
and broad method for solving optimization problems. These probabilistic global opti-
mization methods rely on probability to make decisions. In general, they have high
computational demand. Simulated annealing is one of the most popular stochastic
global optimization methods and has been successfully applied to solve many nonlin-
ear optimization problems [2–6]. Up to today, many novel extensions of the simulated
annealing method have been proposed for optimizing difficult functions, such as Fast
Simulated Annealing and Very Fast Simulated Re-annealing (VFSR) [2–4]. Those
methods mainly focus on finding a proper temperature annealing schedule so as to
make SA converge to the lowest functional minimum (namely, the global minimum)
as quickly as possible. Some researchers have ever tried to introduce the parallelism in
SA. Actually, due to the fact that SA is a naturally sequential algorithm, it is difficult
to parallelize SA without changing its serial nature. In the last decade, methods to
efficiently parallelize SA have always been a controversial issue and were discussed
by Ellen et al. [7], Hamma et al. [8], Ingber [5], Yong et al. [9] and Chen et al. [10]. The
latest five parallel SA algorithms developed by Esin and Linet [11] are implemented
for the Distributed Memory MIMD systems and based upon 8 Pentium II 350 MHZ
PCs connected by 10Mbit/second Ethernet using the Parallel Virtual Machine (PVM)
Linux programming environment. The study based on such a computing platform
impossibly offers us comprehensive performance analyses, we think. The main reason
is that we actually do not know some performances how to vary if the parallel SA
runs with over 8 PCs, such as the scalability of the parallel SA.

With rapid advances in personal computers and networks in the last decade, it is
possible to use SA to find quickly a global optimum with the lowest time-consuming
cost by converting existing simulated annealing software from sequential-to-parallel
forms on a high-performance computer. This approach is becoming more appealing to
us because PCs clusters are more economical than supercomputers and the developed
parallel software is highly portable. Certainly, it is unrealistic to expect to find one
general parallel SA approach to work well for every kind of nonlinear optimization
problem. We think, however, we may attempt to find such a parallel stochastic opti-
mization approach that fits many more problems of the type we are solving. Thus, in
order to thoroughly investigate the performance of parallel approaches for SA on a
high-performance computer and to try to find a as robust and good parallel SA as
possible, we have carried out five different conversions of simulated annealing soft-
ware from sequential-to-parallel forms on IBM Beowulf PCs xSeries clusters using
Message-Passing Interface (MPI) and applied them to a set of standard multimodal
functions for evaluating their performances.

J Glob Optim (2007) 39:261–289 263

The organization of this paper is as follows: In Sect. 2, five strategies are used
and detailed implementations on how to convert the existing sequential simulated
annealing software from sequential-to-parallel forms are presented. The computa-
tional results, detailed performance analyses of algorithms and discussions are given
in Sect. 3. Some conclusions are given in Sect. 4. Test functions used for testing the
proposed parallel optimization algorithms are given in Appendix A.

2 Parallelizing simulated annealing

2.1 Strategies used for parallelizing SA

In this paper, we consider applying SA only to function minimization problems. The
duality principle suggests that we can convert a maximization problem into a mini-
mization one by multiplying the objective function by −1. Therefore, sequential SA
generally may work as follows: At the beginning, SA randomly generates a single
point, and then begins to perform the following iterative operations. A neighbor is
created from a current solution by changing a part of the solution and if the neigh-
bor’s cost function (or “energy”) is less than that of the existing solution, the neighbor
replaces the current solution. Otherwise, the neighbor is accepted probabilistically.
The probability of acceptance depends on the current annealing temperature con-
trolled by the cooling scheme. At last, SA stops when it does not make significant
progress over a number of iterations [2,3,12,13].

As described above, it is easy to see that simulated annealing is inherently sequen-
tial, thereby leading to long computation time, especially in the case of applying
algorithm to problems with large search spaces. Naturally, a more efficient way to
speed up the simulated annealing algorithm and make SA a more attractive solution
for optimization problems is to add parallelism independent of the problem. How-
ever, different people may take different strategies in implementing a parallelizing
SA, such as Mob parallel annealing [14], Time-homogeneous parallel annealing [15],
Parallel recombinative simulated annealing (PRSA) [15] and Parallel systolic SA [16].

Our idea on parallelizing SA based on high-performance computing is to focus on
two considerations. One good consideration is to abandon some search space and thus
make SA always run in promising search space where a global optimization solution
may exist. Another consideration is that SA’s search space always remains unchanged.
In this case, if different random number streams are used on each processor, then each
processor will probably find an independent local minimum, and eventually we choose
the smallest one among them as the best solution at the temperature of each cooling
stage. Therefore, an important matter to think about is how to obtain different and
good initial solutions on each participating processors and make each solution can-
didate independently and randomly move in its own search space with periodically
communicating with each other.

Five strategies of parallelizing SA algorithms are illustrated in Fig. 1 and first
implemented here on an IBM Beowulf PCs xSeries cluster using MPICH (a popular
implementation version of MPI specification [17]). The principal feature of the MPI
program is that a program consists of a (typically fixed) set of heavyweight processes
(in general, each CPU can just only allow one process to run on it), each with a unique
identifier (process ID from integers 0 to P − 1, here supposed P is the total number
of processes). If necessary, processes may interact by exchanging typed messages, by

264 J Glob Optim (2007) 39:261–289

Sequential
SA

Approach-1
(V1)

Strategy taken:
Search space
decompostion

Strategy taken:
Using single initial

point and doing
multiple parallel moves

Strategy taken:
Using multiple initial

points and doing
multiple parallel moves

Strategy taken:
Only applying GA to
multiple initial points
and doing multiple

parallel moves

Strategy taken:
Applying GA to

multiple points at
each temperature
stage and doing

multiple parallel moves

Approach-2
(V2)

Approach-3
(v3)

Approach-4
(v4)

Approach-5
(v5)

Fig. 1 Strategies used for parallelizing SA

engaging in collective communication operations, or by probing for pending messages.
In case of our parallel computing platform, all processes are only executed on com-
puting nodes of the IBM Beowulf PCs cluster. The number of computing nodes that
may be used to run an MPI program depends upon the application submitted to the
Portable Batch System (PBS) running on a head node.

2.2 Detailed descriptions of five approaches

Approach-1: Sequential SA algorithm works on the whole search space directly. If
the search space is huge, it is not easy for SA to find the global optimum solution.
Even though SA can occasionally succeed in getting one, it will take a very long time.
It is a good strategy to decompose a large search space into smaller ones and then
let SA work on them separately. This kind of Divide-and-conquer decomposition
strategy has been applied in many search algorithms for both continuous and discrete
problems [18–21]. Unpromising sub-spaces are excluded from further search, and
promising ones are recursively decomposed and evaluated.

If
→
x is one-dimension parameter x in objective function f (

→
x), then it is very easy

to evenly partition the search space; If
→
x is two-dimension parameters (x1, x2), then

either of x1 and x2 can be used to equally partition search space. Suppose p is the
number of desired search sub-space and x2 is used to partition search space, therefore
the search sub-space can be represented as follows:
Range of Sub-space 1: x1 ∈ (mn1, mx1) and x2 ∈ (mn2, mn2 + (mx2 −mn2)/p)

Range of Sub-space 2:

x1 ∈ (mn1, mx1) and x2 ∈ (mn2 + (mx2 −mn2)/p, mn2 + 2× (mx2 −mn2)/p)

Range of Sub-space 3:

x1 ∈ (mn1, mx1) and x2 ∈ (mn2 + 2× (mx2 −mn2)/p, mn2 + 3× (mx2 −mn2)/p)

J Glob Optim (2007) 39:261–289 265

The rest may be deduced by analogy. Here mn1, mx1 represent the lower boundary
and upper boundary of x1, respectively; mn2, mx2 represent the lower boundary and
upper boundary of x2, respectively. If

→
x is n-dimension parameters (x1, x2, . . . , xn),

then any one of parameters x1, x2, . . . , xn may be chosen to evenly partition search
space. The next search space is determined by parallel process 0. Parallel process 0 is
responsible for collecting the minimum obtained by each parallel process and picks
up the best of them as the promising solution, and then the range of the sub-space
generated the best minimum solution is chosen as the next search space. Any one of
parameters x1, x2, . . . , xn in the next search space may be chosen to evenly partition
the next search space.

Based on the idea mentioned above, Approach-1 may be described as follows:

1. An MPI program initially generates P processes that have ranks 0, 1, . . . , P− 1.
2. Processes with rank 0 equally divide the search space into P parts and distribute

the sub-space to P processes to let each process have a sub-space.
3. Each process runs a sequential SA algorithm and gets the optimum in its sub-

space.1

4. The process with rank 0 is responsible for collecting the optimum obtained by
each process and for deciding if the stop criterion is met or not.

4.1 If the stop criterion2 is met, the algorithm terminates.
4.2 If not, process 0 has to determine the next search space and then goes back

to step 2.
Each SA algorithm runs in its sub-space like a sequential SA. Different people may

use different strategies to implement sequential SA. Suppose there already is an initial
solution

→
x(x1, x2, . . . , xn) to objective function f (

→
x). Our principle in implementation

can be briefly described as follows:

current_solution← initia_solution
current_ cos t← evaluate(current_solution)

T ← Tinitial
while(stop_criterion_not_meet)

for i = 1 to iterations(T)

new_solution← move(current_solution)

� cos t← new_ cos t − current_ cos t
if

(
� cos t ≤ 0 OR e−� cos t/T > Random(0, 1)

)

/ ∗ acceptnewsolution ∗ /

current_solution← new_solution
current_ cos t← new_ cos t

endif
endfor
T ← newx_temp(T)

endwhile

The primary parameters used by each SA algorithm in each sub-space are as follows:
Initial temperature: Tinitial = 1.0;

1 In terms of the used stop criterion, each parallel process may terminate in different ways, thereby
making run time cost different. In order to guarantee that process 0 can collect the optimum minimum
obtained by each parallel processes, synchronous point is set here after the 3rd step of V1 ends.
2 Stopping criterion here is that the algorithm terminates when the difference between the previous
and the latest optimal solution is less than or equal to 10−10.

266 J Glob Optim (2007) 39:261–289

Temperature cooling rule newx_temp(T): Tt+1 = Tt × 0.85;
At each temperature, the number of iterations is equal to 1000× n (n is the number
of parameters,

→
x(x1, x2, . . . , xn));

Stop_criterion: if ((|f (→x)G min − f (
→
x)L min| < 1e − 10) || (Tt+1 < 1e − 04)) is true,

then SA terminates (Here f (
→
x)G min Represents the global minimum found so far;

f (
→
x)L min Represents the global minimum newly found at current temperature);

In addition, function move(current_solution) is implemented as follows:

for(i = 0, i < n; i++)

{
stepsize= (mxi −mni)× Random(0, 1);
if(Random(0, 1) >= 0.5)

new_xi ← current_xi+ stepsize;
else
new_xi ← current_xi−stepsize;
if((new_xi < mni)|| (new_xi > mxi))
Enforce_bound(new_xi, i);
}

Above function Enforce_bound(Parametervalue,i) is implemented as follows:
{
if (Parametervalue >= mxi) Parametervalue = mxi −DBL_ EPSILON;
else
if (Parametervalue > mxi) Parametervalue = mxi;
if (Parametervalue <= mni) Parametervalue = mni +DBL_ EPSILON;
else
if (Parametervalue < mni) Parametervalue = mni;
}
(Random(0,1) is a random number generator between 0 and 1; mni, mxi represent the
lower boundary and upper boundary of xi, respectively.)

Approach-2: A common approach to parallelizing simulated annealing is to generate
several perturbations in the current solution simultaneously. Some of them, those with
small variance, locally explore the region around the current point, while those with
larger variances globally explore the feasible region. If each process has got different
perturbation or move generation, each process will probably get a different solution
at the end of iterations. Approach-2 may be described as follows:

1. The MPI program initially generates P processes that have ranks 0, 1, . . . , P− 1.
2. The MPI program initially generates a starting point at random available for all

processes and all processes set T = T0.
3. Process with rank 0 randomly generates P different step sizes and distributes them

to each participating process.
4. At the current temperature T, each process begins to execute iterative operations.
5. At the end of iterations, process with rank 0 is responsible for collecting the solu-

tion obtained by each process at current temperature and broadcasts the best
solution of them among all participating processes.

6. If the termination condition is not met, each process cools the temperature and
goes back to step 4, else algorithm terminates.

The core of the simulated annealing algorithm is the Metropolis procedure which
simulates the annealing process at a given temperature T. The perturbation methods

J Glob Optim (2007) 39:261–289 267

to generate a new solution significantly affect the algorithm convergence. Suitable
perturbation ways are expected to generate diverse solutions at each given temper-
ature. In Approach-2, at the beginning the process 0 randomly generates different
step sizes for each parameter with the following way and distributes them to each
participating process:

for(j = 0; j < P; j++)

for(i = 0; i < n; i++)

{
do
Stepsize[j][i] = (mxi −mni)× Random(0, 1)+ (mxi −mni)× (j/(2× P));
while(Stepsize[j][i] >= (mxi −mni));
}

(mni, mxi are the lower boundary and upper boundary of parameter xi, respectively;
n is the number of parameters of candidate solution

→
x(x1, x2, . . . , xn) to objective

function f (
→
x))

Therefore, at each parallel process each parameter has completely different step
size from others parallel processes. Then the following perturbation ways are used in
each parallel process:

for(i = 0, i < n; i++)

{
if (Random(0, 1) >= 0.5)

new_xi ← current_xi + stepsize[i];
else
new_xi ← current_xi − stepsize[i];
if ((new_xi < mni)||(new_xi > mxi))

Enforce_bound(new_xi,i);
}
However, sometimes the new solutions generated by perturbation functions did not
make the condition expression

(
� cos t ≤ 0 OR e−� cos t/T > Random(0, 1)

)
be true

and thus new neighborhood solution is not always accepted as next candidate solution.
So the number of the accepted neighborhood solutions needs to be counted. In this
case, the step sizes in perturbation ways should be changed according to the number
of the accepted neighborhood solutions. Suppose that the number of iterations is set
to 100×10×n (this important control parameter is determined manually.), this means
the step size can be changed at most 100 times and each parameters xi has opportunity
to generate 10 neighborhood perturbations. Therefore, the framework of Metropolis
procedure can be described as follows:
for(i = 0; i < 100; i++) // Adjust ing stepsize

for(j = 0; j < 10; j++) // adjusting all parameters
for(k = 0; k < n; k++) // adjusting one parameter
{
codes to

· · ·
. . .

implement Metropolis procedure

}
Suppose that for parameter xi there are cci times to accept the neighborhood pertur-
bation as next candidate solution. The step sizes for the parameter xi will be changed
in the following way:

268 J Glob Optim (2007) 39:261–289

for(i = 0, i < n; i++)

{
rate = cci/10;
if (rate > 0.6)stepsize[i] = stepsize[i] × (1+ 5× (rate− 0.6));
if (rate < 0.4)stepsize[i] = stepsize[i]/(1+ 5× (0.4− rate));
}
Of course, in general, the above step size stepsize[i] for each parameter xi should
always be within the range of (mxi − mni). This work can be done by an additional
function. Therefore, some parallel processes with small variances in step sizes, will
locally explore the region around the current point, while those parallel processes
with larger variances in step sizes will globally explore the feasible region.

Approach-3: The quality of an SA’s performance is usually affected by the configu-
ration of the starting solution. We may further improve Approach 2 by changing a
single start-solution into multiple start-solutions. Thus, we get the Approach 3 and
may think of it as a multistart search technique. To get Approach 3, we just need to
modify the step 2 in Approach 2 as follows:

2. Process with rank 0 initially generates P different starting points at random and
distributes them to each participating process and all processes set T = T0.
In process 0, multiple different starting points are randomly generated as follows:

for(i = 0; i < P; i++)

for(j = 0; j < n; j++)

x[i][j] = mnj + (mxj −mnj)× Random(0, 1);

(mnj, mxj are the lower boundary and upper boundary of parameter xj, respectively;
n is the number of parameters of candidate solution

→
x(x1, x2, . . . , xn) to objective

function f (
→
x))

Approach-4 and Approach-5: Genetic algorithms are population-based optimization
algorithms based on Darwinian models of natural selection and evolution. The basic
idea behind GA is that an initial population of candidate solutions of size N is cho-
sen at random and each solution is evaluated according to the specified optimization
function [21]. If genetic operators (Crossover and Mutation) are chosen properly
and applied to a population by a specific number of iterations (generations), then
eventually the population will have better solutions. Thus, GA improves the whole
population. In Approach 3, the initial multiple starting-solutions are randomly gener-
ated to reduce the effect caused by the configuration of the starting solution. In fact,
those starting solutions may not be very good and can be further optimized. In order
to guarantee the quality of initial starting solutions, GA may be applied to those initial
solutions. Therefore, Approachs 4 and 5 may be elaborated as follows, respectively:

Apprach-4:

1. The MPI program initially generates P processes that have ranks 0, 1, . . . , P− 1.
2. Process with rank 0 initially generates P random start-solutions and runs GA by

a fixed number of iterations (suppose that the maximum generation is set to 1,000
or more). After the GA ends, process with rank 0 distributes P individuals in the
final population to each participating process as an initial starting solution.

3. All processes set current temperature T = T0;
4. At the current temperature T, each process begins to execute those iterative

operations.

J Glob Optim (2007) 39:261–289 269

5. At the end of the iterations, process with rank 0 is responsible for collecting the
solution obtained by each process at current temperature and broadcasts the best
solution of them among all participating processes.

6. If the termination condition is not met, each process cools the temperature and
goes back to step 4, otherwise the algorithm terminates.

Approach-5:

1. The MPI program initially generates P processes that have ranks 0, 1, . . . , P− 1.
2. Process with rank 0 initially generates P random start-solutions and runs GA by

a fixed number of iterations (suppose that the maximum generation is set to 1,000
or more). After the GA ends, process with rank 0 distributes P individuals in the
final population to each participating process as an initial starting solution.

3. All processes set current temperature T = T0;
4. At the current temperature T, each process begins to execute those iterative

operations.
5. At the end of the iterations, process with rank 0 is responsible for collecting the

solutions obtained by each process at current temperature and then employing a
GA to evolve them by a fixed number of generations and finally broadcasting the
best solution of the population achieved by GA among all participating processes.

6. If the termination condition is not met, each process cools the temperature and
goes back to step 4, otherwise the algorithm terminates.

Inside above Approachs 4 and 5, in the case of minimizing f (
→
x) is subject only

to lower- and upper-bound constraints on variables, the designed GA has used real
parameters as chromosome codes and may work as follows:

1. Generate P individuals at random as initial solutions.
2. Evaluate the initial population.
3. Apply crossover operators to the current population to get 2P individuals

(P parent individuals plus P children individuals).
4. Apply mutation operators to each child individual and evaluate the P mutated

individuals.
5. According to the fitness value, by tournament competition strategy, select P indi-

viduals from 2P individuals as the next evolved population.
6. Determine if the iteration reaches the maximum generation or not:

6.1. If yes, the algorithm terminates.
6.2. If no, the algorithm needs to do following operation:

• If the best stored individual is not updated consecutively and the number of
counters cumulatively reaches 10 times (or 30 times or 50 times), 10% (or 30%
or 50%) individuals located at the bottom of the next evolved population will
be replaced by randomly generated individuals, and then the algorithm goes
back to step 3 and continues.3

3 In our algorithm, the best individual found so far is stored additionally. At the each generation, if
the best individual currently generated in population is better than the previously stored individual
in evaluation fitness, then it will replace the stored best individual. A counter is set to count times.
Suppose the best stored individual has not been consecutively updated by 10 times, then 10% indi-
viduals located at the bottom of the population will be replaced by randomly generated individuals.
The rest (30% or 50%) may be deduced by analogy. Obviously this operation can be done after the
individuals in population are sorted in terms of evaluation fitness.

270 J Glob Optim (2007) 39:261–289

X_0

X_1

X_2

X_n-3

X_n-2

X_n-1

.

.

Y_n-3

Y_n-2

Y_n-1

.

.

X_n-3

X_n-2

X_n-1

.

.

Y_n-3

Y_n-2

Y_n-1

.

.

Crossover

Mother with N
parameters

Father with N
parameters

Child 1 with N
parameters

Child 2 with N
parameters

X_3

Y_0

Y_1

Y_2

Y_3

X_0

Y_1

Y_2

Y_3

Y_0

X_1

X_2

X_3

Fig. 2 Crossover operation with Num_crossover = 3 and First_position = 2

If GA is applied to a problem, in general, there are at least four issues, namely,
chromosome code, fitness evaluation, selection strategy and genetic operations, which
need to be addressed. As mentioned above, SA is an individual-based optimization
algorithm and algorithm only optimize one candidate solution to optimization func-
tion f (

→
x), so the candidate solution

→
x(x1, x2, . . . , xn) can be coded as a vector(one

dimensional array). In GA, suppose that an initial population comprise p individ-
uals, so the individuals will have to be coded with two-dimensional array, such as
individual[i][j], (0 <= i < p; 0 <= j < n) (where p is population size and n is the num-
ber of parameters). Therefore, the fitness evaluation function is naturally equivalent
to the optimization function f (

→
x) itself. Genetic operations generally include cross-

over and mutation. Before crossover operation begins, it is necessary to know where
the crossover position will be and how many parameters will be used to cross over.
In the implementation of GA, the algorithm always randomly generates a number
Num_crossover that is no more than half of a chromosome length. In addition, the
algorithm also randomly chooses the first position in terms of the following rule:

Num_crossover = floor
(
Num_parameter

/
2 ∗ Random_num[0, 1])

First_position = floor(1+ Random_num[0, 1] ∗ (Num_parameter−Num_crossover))

(* floor(double x) is one of C/C++ mathematical library functions and computes the
largest integral value not greater than x.)

For example, Fig. 2 shows the process of crossover operation with Num_crossover
= 3 and First_position = 2 (supposing here the number of parameters is N ≥ 7 at
lease.). Mutation operation may be done as follows: mutation operator at first needs to
randomly choose a parameter xi, (1 < i < n) from a child individual

→
x(x1, x2, . . . , xn)

and replace it with a randomly generated number. Of course, the boundary condition
mni <= xi <= mxi should be always satisfied. After the population is operated by
crossover and mutation, the number of parent population plus offspring is definitely
more than the current parent population size. Tournament competition strategy is
used to keep the size of next parent population unchanged.

J Glob Optim (2007) 39:261–289 271

Approach-5 is based on Approach-4 and just only employs a different way in
STEP 5. Obviously, in the case of Approach-5, GA will be used to further optimize
the solutions collected from each process at each cooling temperature stage and always
pick up the best solution as optimization target of next temperature step.

3 Experimental results and performance analysis

3.1 A sample test problem

In practice, many optimization problems deal with a large number of variables (up
to tens or hundreds or more) and/or a very large number of local minima. In these
situations, traditional optimization methods implemented in software running on a
single computer generally offer low efficiency and limited reliability. Thus, in order to
better test our proposed algorithms, for instance, we selected the following significant
N-Dimensional general test function:

f (
_
x) = (1/2)

N∑

j=1

(
x4

j − 16x2
j + 5xj

)
, (1)

as an objective function, where N-dimensional parameters may range from −∞ to
+∞. For this test function, the number of local minima is 2N , but the number of global
minima is just 1. Cetin et al. [23], by using Terminal Repeller Unconstrained Subenergy
Tunneling (TRUST), which is a kind of deterministic method, have found the func-
tion’s global minimum that is located at

[______
xGM

]=[−2.90354,−2.90354, . . . ,−2.90354
]
.

Because each run of a stochastic optimization algorithm may find a different opti-
mal/good solution, we really do not know whether or not the obtained solution is
close to the true global optimal solution. The determination criterion for the attain-
able solution quality used by us in all experimental tests may be described as follows:

If the error between each parameter and –2.90354 is less than 0.001, then we may
think that the optimization algorithm has succeeded to find the global optimum (the
number of success is added 1); otherwise, the optimization algorithms failed to find the
global optimum.

For example, one satisfactory global optimum solution to the test function in case
of N = 50 found by our approach-V5 is given in Table 1. We think approach-V5 has
succeeded to find the global optimum solution to the test problem in terms of above
determination criterion. One of our motivations is to verify whether the five different
parallel SA approaches can effectively reach the global minimum of the above test
function. More importantly, we need to know which is the best approach to some
function optimization problems in terms of success rate and convergence speed as the
search space increasingly extends. The following tests have been done on the IBM
Beowulf PCs Linux cluster. This kind of high-performance computer consists of 2
head nodes, 2 manager nodes and 96 computing nodes, each node with 1GB memory
has two Pentium III 1 GHZ processors. Networking in the cluster is accomplished
with Myrinet with full-duplex 2 + 2 Gigabit/second links.4 In all experiments, it is

4 On Beowulf PCs cluster the parallel software developed using MPI can only allow one parallel pro-
cess to run on one CPU. This is a restriction of MPI parallel programs. A PBS job management system
(a kind of job scheduler) is installed on our IBM Beowulf PCs Cluster. Under this circumstance, if

272 J Glob Optim (2007) 39:261–289

Table 1 Sample solution to the used test function found by Approach-V5

Function value −1958.30828518835
50 parameter values

−2.9035346316028 −2.90353370333875 −2.90353415109338
−2.90353437349436 −2.90353466888656 −2.9035332962738
−2.9035355313778 −2.90353397771527 −2.90353377506699
−2.90353407783128 −2.90353419327455 −2.90353429236886
−2.90353364675147 −2.90353422397274 −2.90353379298958
−2.90353434335605 −2.90353492607259 −2.90353393083044
−2.90353429102594 −2.90353356769459 −2.90353406882167
−2.9035341619688 −2.90353441755032 −2.90353420362525
−2.90353377519349 −2.90353406322817 −2.90353390773739
−2.90353412449576 −2.90353405020605 −2.90353373204054
−2.90353287974997 −2.90353389509765 −2.90353512917096
−2.90353413618296 −2.90353484496602 −2.90353437264664
−2.90353315775705 −2.90353458733501 −2.90353316152059
−2.90353382960012 −2.90353394186907 −2.90353354737074
−2.90353406912158 −2.90353375294677 −2.90353383431399
−2.9035341329692 −2.90353404615635 −2.90353465063491
−2.90353409266615 −2.90353490429537

worth pointing out that the termination criteria used for all approaches proposed in
this paper are given as follows:
1. For V1 approach, the determination criterion for sequential SA inside V1 is as
follows:
Stop_criterion: if ((|f (→x)G min − f (

→
x)L min| < 1e − 10) || (Tt+1 < 1e − 04)) is true,

then SA terminates (Here f (
→
x)G min Represents the global minimum found so far;

f (
→
x)L min Represents the global minimum newly found at current temperature);

But for V1, V2, V3, V4 and V5 approach, their common stop criterion is as follows:
Algorithm terminates when the difference between the previous and the latest global
optimal solution is less than or equal to 10−10.

Inside V4 and V5 approach, the termination criterion for GA is the maximum
generation. The value of maximum generation is set according to the complexity of
objective functions.

3.1.1 Increasing search space dimensions

For the above test function (1), if the variable range of parameters is not too big,
increasing the search space dimensions may be a good way to test these five different
methods’ performance. When the parameter interval falls into the range [−104, 104],
experiments with three cases have been fully done with the number of dimension
N = 10, N = 20 and N = 30, respectively. Experimental results are shown in
Tables 2–4, respectively (For example, in the tables, success rate 3/10 indicates this
approach has been used successfully to find the global minimum 3 times out of 10

Footnote 4 continued
a MPI parallel program is running on multiple CPUs, PBS system will not allow other users’ jobs to
launch/run on those CPUs occupied by the running MPI program. Therefore both the program wall
clock time and CPU time cost can be measured without any interference from other users’ jobs. After
the MPI parallel program ends, PBS will schedule the jobs in queue according to some rules, such as
“first come first serve”.

J Glob Optim (2007) 39:261–289 273

Table 2 In the case of N = 10, success rates of 5 versions running on Beowulf Cluster

Number of processes

10 20 40 80 120 160 192

V1 5/10 2/10 6/10 3/10 4/10 5/10 6/10
V2 3/10 6/10 6/10 3/10 2/10 3/10 2/10
V3 4/10 2/10 2/10 3/10 2/10 2/10 2/10
V4 4/10 4/10 2/10 2/10 1/10 1/10 1/10
V5 10/10 10/10 10/10 10/10 10/10 10/10 10/10

Table 3 In the case of N = 20, success rates of 5 versions running on Beowulf Cluster

Number of processes

10 20 40 80 120 160 192

V1 6/10 3/10 4/10 7/10 5/10 5/10 3/10
V2 2/10 3/10 2/10 4/10 1/10 1/10 1/10
V3 3/10 1/10 3/10 1/10 2/10 2/10 1/10
V4 3/10 2/10 2/10 0/10 0/10 0/10 1/10
V5 10/10 10/10 10/10 10/10 10/10 10/10 10/10

Table 4 In the case of N = 30, success rates of 5 versions running on Beowulf Cluster

Number of processes

10 20 40 80 120 160 192

V1 3/10 5/10 4/10 8/10 6/10 8/10 8/10
V2 1/10 2/10 1/10 2/10 1/10 1/10 1/10
V3 4/10 2/10 3/10 0/10 2/10 0/10 0/10
V4 1/10 1/10 0/10 0/10 0/10 0/10 0/10
V5 10/10 10/10 10/10 10/10 10/10 10/10 10/10

runs.). It is easily observed from Tables 2–4 that each one of the five approaches can
successfully find the global minimum. However, different approaches have yielded
different success rates in reaching equilibrium. Only in terms of success rate, it is easy
to see the fact that the fifth approach, V5, is the most efficient and robust, as it never
failed to find the global optimal solution in any of the runs, while some of the other
methods did fail frequently. Additionally, the first approach, V1, seems to be a good
method because it works well in most cases. However, we found out that its run time
cost is significantly increased in all cases when the number of processes is equal to
10,20,40,80,120,160,192, respectively as the search space dimensions grow. Figure 3
shows us an example in the case of the number of CPUs equals to 10, 160 and 192,
respectively. More badly, this indicates that V1 will lead to costs over a long period of
time if the random search space grows fast.

For better understanding of the performance of V5, when we kept increasing search
space dimensions up to N = 50 and N = 70, we found, to our surprise, that V5 never
failed to converge to the global optimum solution. Moreover, it is worthy to note that
the run time cost of v5 almost linearly increases as the number of processes grows
in the case of small search space dimensions. We may see this point from Fig. 4, but
the run time cost of V5 parabolically changes as the number of processes grows in
the case of bigger search space dimensions. This interesting result may be observed in
Fig. 5 and 6 as well.

274 J Glob Optim (2007) 39:261–289

Fig. 3 Average run time versus number of dimensions for V1, in case of the number of processes
equal to 10,160,192 (10 runs each case)

Fig. 4 In the case of N = 10, 20, 30, V5’s average run time of 10 runs versus the number of processes

J Glob Optim (2007) 39:261–289 275

Fig. 5 In case of N = 70, V5’s average run time of 10 runs versus the number of processes

Fig. 6 In case of N = 70, V5’s average run time of 10 runs versus the number of processes

3.1.2 Increasing parameter interval

For the above test function (1), another alternative to augment search space is to
increase parameter interval. When we selected N = 50 and considerably varied the
parameter interval from [−104, 104] to [−1010, 1010], we found out that the other four
approaches seemed to be ineffective in most cases and generally failed to converge to

276 J Glob Optim (2007) 39:261–289

Table 5 In the case of N = 50, success rates of V5 running on Beowulf Cluster

Number of processes

10 20 40 64 80 120 160 192

R1 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
R2 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
R3 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
R4 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
R5 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
R6 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
R7 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10

(R1, R2, R3, R4, R5, R6 and R7 represent the parameters range [−104, 104], [−105, 105], [−106, 106],
[−107, 107], [−108, 108], [−109, 109] and [−1010, 1010], respectively.)

Fig. 7 In case of different parameter range and N = 50, V5 run time cost versus the number of
processes used

the known global optimum solution. Only V5 could successfully find the global mini-
mum located at

[______
xGM

] = [−2.90354,−2.90354, . . . ,−2.90354
]

and its success rate is
very high with 100% rate. Experimental results are presented in Table 5. Additionally,
we also found that the average run time cost out of 10 runs of V5 parabolically varied
with the number of CPUs used as the parameter interval increased (this means the
search space expands considerably). Experimental results are given in Fig. 7. This
shows that there must be an optimal number of processors p that minimizes the
program execution time. This optimal number of processors p would be appearing
between 40 and 100 according to the information released in Fig. 7. This simulta-
neously implies that it is not possible to further reduce the run time cost of V5 by
gradually increasing the number of CPUs used. We will discuss this point in detail in
Sect. 3.4.

J Glob Optim (2007) 39:261–289 277

Table 6 The success rates of V1 running on Beowulf Cluster

Number of processes

10 20 40 80 120 160 192

F1 5/10 4/10 4/10 8/10 7/10 6/10 7/10
F2 3/10 7/10 4/10 7/10 7/10 4/10 7/10
F3 3/10 7/10 3/10 3/10 10/10 7/10 8/10
F4 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F5 6/10 9/10 9/10 10/10 5/10 6/10 10/10
F6 2/10 3/10 0/10 3/10 1/10 3/10 7/10
F7 0/10 1/10 1/10 3/10 2/10 2/10 3/10
F8 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F9 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F11 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F12 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F13 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F14 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F15 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F16 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F17 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F18 10/10 10/10 10/10 10/10 10/10 10/10 10/10

3.2 More tests for checking the generality of the five approaches

The efficiency of algorithms developed in this paper needs to be tested on various
functions, with different orders of difficulty. Each test function may yield different
number of parameters and each parameter may yield different ranges. To guarantee
the generality of the five approaches, initial points will have to be generated randomly
and must fall into the range of the parameters. Also, the computer’s machine time is
used as a random seed in the implementation of all approaches. Thus characteristic of
randomness is absolutely guaranteed for the five approaches.

For purposes of comparison, the behavior of each approach is determined by an
extensive computational experiment by using some well-known global optimization
test functions. The mathematical representations of these functions are presented in
Appendix A and the experimental results are given in Tables 6–10, respectively. These
functions are well-known test problems in the literature and are commonly used by
other researchers to test their search algorithms [24,25]. Most of these test functions
have low dimensionality, but they have several local and global optima and large flat
regions enclosing the global optima. These characteristics generally make it difficult
to find the global optima of those test functions.

From Tables 6–10, it can be seen that V5 performed significantly better than other
methods in success rate and in most cases reached the global optimum solution in all
runs for 18 cases of test problems. Especially, in the case of function F7 which is of
a high degree of difficulty, other algorithms including V1 did not work well. Though
for V5, there is just a low success rate if a few CPUs used. However, if the number
of CPUs used increases, the success rate for V5 improves. To really test the efficacy
of V5, it must be tried on extremely difficult problems. This is because almost any
algorithm will probably solve an easy problem, but the real advantages of one algo-
rithm over another will become evident in when solving those very difficult problems.
Thus, we continued to increase the complexity of F7 by using bigger N-dimensional

278 J Glob Optim (2007) 39:261–289

Table 7 The success rates of V2 running on Beowulf Cluster

Number of processes

10 20 40 80 120 160 192

F1 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F2 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F3 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F4 2/10 0/10 0/10 0/10 0/10 0/10 0/10
F5 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F6 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F7 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F8 5/10 7/10 8/10 6/10 7/10 7/10 7/10
F9 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F11 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F12 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F13 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F14 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F15 9/10 10/10 10/10 10/10 10/10 10/10 10/10
F16 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F17 9/10 10/10 10/10 10/10 10/10 10/10 10/10
F18 10/10 10/10 10/10 10/10 10/10 10/10 10/10

Table 8 The success rates of V3 running on Beowulf Cluster

Number of processes

10 20 40 80 120 160 192

F1 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F2 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F3 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F4 2/10 1/10 1/10 0/10 0/10 0/10 0/10
F5 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F6 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F7 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F8 7/10 10/10 10/10 10/10 10/10 10/10 10/10
F9 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F11 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F12 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F13 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F14 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F15 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F16 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F17 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F18 10/10 10/10 10/10 10/10 10/10 10/10 10/10

parameter-spaces of N = 10, 12, 14, or 16 and got the experimental results listed in
Table 11. Experimental results show that V5 can find the global optimal/near-optimal
solution to the test problem F7 of high difficulty and also indicate that V5 can have
potential ability to solve some extremely difficult function problems.

J Glob Optim (2007) 39:261–289 279

Table 9 The success rates of V4 running on Beowulf Cluster

Number of processes

10 20 40 80 120 160 192

F1 7/10 8/10 6/10 7/10 7/10 5/10 6/10
F2 3/10 4/10 0/10 1/10 1/10 4/10 2/10
F3 2/10 0/10 1/10 0/10 0/10 1/10 0/10
F4 9/10 10/10 10/10 10/10 10/10 10/10 10/10
F5 2/10 6/10 0/10 4/10 3/10 4/10 6/10
F6 0/10 0/10 0/10 1/10 0/10 3/10 0/10
F7 0/10 0/10 0/10 0/10 0/10 0/10 0/10
F8 10/10 10/10 10/10 10/10 9/10 10/10 10/10
F9 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F11 10/10 10/10 9/10 10/10 10/10 10/10 10/10
F12 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F13 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F14 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F15 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F16 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F17 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F18 10/10 10/10 10/10 10/10 10/10 10/10 10/10

Table 10 The success rates of V5 running on Beowulf Cluster

Number of processes

10 20 40 80 120 160 192

F1 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F2 10/10 9/10 9/10 10/10 10/10 10/10 10/10
F3 10/10 9/10 8/10 10/10 10/10 10/10 9/10
F4 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F5 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F6 7/10 7/10 10/10 10/10 10/10 10/10 10/10
F7 0/10 0/10 1/10 2/10 8/10 8/10 10/10
F8 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F9 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F11 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F12 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F13 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F14 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F15 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F16 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F17 10/10 10/10 10/10 10/10 10/10 10/10 10/10
F18 10/10 10/10 10/10 10/10 10/10 10/10 10/10

3.3 Comparisons with other global optimization methods

In general, it is difficult to find sections in published results in some literatures to
compare with our results. This is due to the fact that different people used different
test functions in their work and algorithms were implemented on different computing
platforms with different aims. For example, Esin and Linet [11] implemented parallel

280 J Glob Optim (2007) 39:261–289

Table 11 Success rates of V5 in case of high degree of difficulty

Number of processes Best minimum

10 20 40 80 120 160 192

N = 10 0/10 1/10 1/10 1/10 3/10 5/10 7/10 0
N = 12 0/10 0/10 0/10 0/10 0/10 1/10 1/10 0
N = 14 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0.41482
N = 16 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0.89891

SA procedures and evaluated them on large-scale test functions with the aim of locat-
ing the global optima within efficient computation times. Ellen et al. [7] implemented
a parallel SA on a hypercube multiprocessor using speculative computation to obtain
speedup without sacrificing the general applicability of simulated annealing or the
high quality solutions, and the parallel algorithm was applied to another important
parallel processing problem of task assignment. Cem [26] implemented a hybrid par-
allel SA algorithm to optimize store performance. Almost all parallel SA algorithms
in the literature have concentrated on specific problems. However, finally we discov-
ered some work in some literature that was done with the same set of test functions
and similar destinations [24,25,27].

3.3.1 The number of function evaluations needed for each method

In general, the number of function evaluations needed to reach the minimum can be
used to test the efficiency of global optimization methods because it is machine-inde-
pendent. For comparison purposes, the results in Table 12 generated by the Adaptive
Random Search, Simulated Annealing algorithm and Genetic Algorithm are taken
from [25] and [27]. Rosenbrock classical test functions in 2 and 4 dimensions used in
those publications are as follows:

f (x1,x2) = 100(x2 − x2
1)

2 + (1− x1)
2, (2)

f(x1, x2, x3, x4) =
3∑

k=1

100(xk+1 − x2
k)2 + (1− xk)2, (3)

The admissible domains of the functions were Xi ∈ [±2000, ±2000]∀i for 2 dimen-
sions and Xi ∈ [±200, ±200]∀i for 4 dimensions. It is easily observed from Table 12
that a group of fixed points as starting points is used in ARS, SA and GA. For V5
unlike other methods used in comparison, each test began with a randomly generated
initial solution. The results out of 100 trials of v5 are presented in Table 13.

Apparently, in most cases, minima generated by V5 are much better than those
generated by other methods. However, it is worth noting that the number of function
evaluations performed by V5 is always big. Perhaps the reason is that different stop-
ping criteria may be used among the methods listed in Table 14. In V5, two function
evaluations were done by both SA and GA at each temperature cooling stage. As
mentioned above, the stopping criteria used by SA inside V5 is that the algorithm
terminates when the difference between the previous and the latest best solution is
less than or equal to 10−10. The termination condition used by GA inside V5 is the

J Glob Optim (2007) 39:261–289 281

Table 12 Comparison of the ARS, SA and GA for Rosenbrock Valley functionsa

Starting point Method

Function evaluations Final function value

ARS SA GA ARS SA GA

2 dimensions
1001,1001 3411 500001 2389 1586.4 1.8E−10 1.2E−12
1001,−999 131841 508001 2214 8.6E−9 2.6E−9 2.3E−10
−999,−999 15141 524001 3254 1.2E−8 1.2E−9 4.4E−11
−999,1001 3802 484001 3412 583.2 4.2E−8 3.4E−10
1443,1 181280 492001 2115 4.7E−10 1.5E−8 3.4E−10
1,1443 2629 512001 5781 1468.9 1.6E−9 1.2E−10
1.2,1 6630 488001 1548 5.5E−7 2.0E−8 2.2E−18
4 dimensions
101,101,101,101 519632 1288001 228534 1.9E−6 5.0E−7 4.8E−9
101,101,101,−99 194720 1328001 213422 1.7E−6 1.8E−7 2.1E−9
101,101,−99,−99 183608 1264001 264521 3.8E−6 5.9E−7 2.2E−8
101,−99,−99,−99 195902 1296001 299321 2.3E−6 7.4E−8 3.0E−9
−99,−99,−99,−99 190737 1304001 44567 2.7E−6 3.3E−7 5.7E−9
−99,101,−99,101 4172290 1280001 234312 2.6E−6 2.8E−7 3.9E−8
101,−99,101,−99 53878 1272001 193134 3.7 2.3E−7 4.1E−8
201,0,0,0 209415 1288001 182131 1.1E−6 7.5E−7 3.0E−8
1,201,1,1 215116 1304001 283946 1.2E−6 4.6E−7 5.8E−8
1,1,1,201 29069006 1272001 214312 2.2E−6 5.2E−7 4.3E−8

a Results taken from Corana et al. [25] and Hussain and Al-Sultan [27]

Table 13 Results of V5 for Rosenbrock Valley functions

Number of dimensions Num of processes (10 runs each case)

10 20 40 60 80

2 Function evaluationsa 262,440 398,721 1,133,796 1,826,782 1,763,232
Best minimuma 3.1E−9 1.3E−9 2.3E−10 1.6E−9 1.3E−10

4 Function evaluationsa 4,176,801 5,804,293 11,608,858 14,177,531 21,256,251
Best minimuma 3.2E−10 3.2E−10 3.0E−9 1.0E−10 1.1E−11

100 120 140 160 192
2 Function evaluationsa 2,834,414 1,635,787 3,968,373 3,526,375 7,382,010

Best minimuma 6.9E−11 9.9E−09 2.1E−11 1.1E−09 3.7E−11
4 Function evaluationsa 21,178,909 1,8944,175 34,454,521 30,747,552 30,312,020

Best minimuma 3.9E−11 4.6E−11 7.7E−11 1.6E−11 1.8E−10

a The best minimum generated by V5 of 10 runs and the number of function evaluations accordingly
given by V5

maximum generation that may be manually adjusted depending on the complexity
of the test functions. It is not a good idea to use a fixed maximum generation on all
of the test functions. Thus, we believe that, in some cases, a decision cannot be made
to determine which method is the best one only in terms of the number of function
evaluations. In fact, some other factors, such as the accuracy of the obtained global
optimal solution and the success rate to obtain satisfactory global optimum solution,
need to be considered simultaneously as well.

282 J Glob Optim (2007) 39:261–289

Table 14 Methods used in comparison

Method Name Reference

ARS Adaptive random search Masri et al. [24]
SA Simulated annealing Corana et al. [25]
GA Genetic algorithm for multimodal function Hussain and Al-sultan [27]
V5 Highly hybrid genetic algorithm Dingjun and Park (2006) (this paper)

and simulated annealing

Table 15 Methods used in comparison

Method Name Reference

HSGT Hybrid scatter genetic tabu search Trafalis and Kasap [24]
HSG Hybrid scatter genetic search Trafalis and Al-Harkan [25]
SA Simulated annealing Goffe et al. [27]
GENOCOP Genetic algorithm for numerical

optimization with constraints Michalewicz and Janikow [25]
V5 Highly hybrid genetic algorithm

and simulated annealling Dingjun et al. (2006) (this paper)

3.3.2 Success rate and optimum solution quality

The success rate may be used as a measure to verify the robustness of an algorithm.
In general, we cannot rely on the CPU time cost which is machine-dependent, as
our measure of the efficiency of algorithms. However, if there is no special limit on
algorithm run time costs, we may consider making some comparisons in solution qual-
ity with other global optimization algorithms so as to ascertain some advantages or
disadvantages of algorithms. Thus, we have also compared the performance of V5,
which is the best approach we proposed here, with some other recent algorithms in
the literature that are shown in Table 15 in terms of their success rate, CPU time
cost and solution quality. Some of the test functions listed in Appendix A have been
tested using other global optimization methods. Comparable results are presented in
Tables 16 and 17. It is easily observed that V5 is much better than other methods used
in comparisons just in terms of the success rate and the optimum solution quality.

3.4 Further performance analyses

According to the analyses above, V5 may be viewed as the best algorithm in global
function optimization problems. In this section, we will further analyze its inherent
character and measure its performance in parallelism. Many metrics are used for
measuring the performance of a parallel program running on a high-performance
computer [28]. The most commonly used measurements are elapsed time, price/per-
formance, speed-up5 and efficiency.6

5 In this paper, we used the relative speed-up. It may be defined as follows: Srelative
P = T2/TP, T2 is

the execution time of a parallel program on a high-performance computer with 2 CPUs used; TP is
the execution time of a parallel program on a high-performance computer with P CPUs used.
6 In this paper, we used the relative efficiency. It may be defined as follows: ηrelative

P = T2×2/TP×P =
Srelative

P × 2/P. Efficiency close to unity means that you are using your hardware effectively; low effi-
ciency means that you are wasting resources.

J Glob Optim (2007) 39:261–289 283

Table 16 The success rate for each test problem and method

Problem HSGTa HSGa SAa GENOCOPa V5b

F8 100/100 100/100 100/100 100/100 100/100
F9 100/100 100/100 100/100 100/100 100/100
F10 61/100 5/100 58/100 100/100 100/100
F11 100/100 100/100 100/100 100/100 100/100
F12 70/100 99/100 100/100 100/100 100/100
F13 100/100 100/100 100/100 100/100 100/100
F14 100/100 100/100 20/100 100/100 100/100
F15 100/100 98/100 5/100 100/100 100/100
F16 100/100 45/100 100/100 93/100 100/100
F17 100/100 100/100 100/100 100/100 100/100
F18 100/100 84/100 100/100 100/100 100/100
F19 100/100 100/100 100/100 100/100 100/100
F20 100/100 52/100 74/100 100/100 100/100
F21 76/100 19/100 7/100 100/100 100/100
F22 36/100 4/100 0/100 74/100 100/100

a Results taken from Trafalis and Kasap [24]
b V5 was executed 10 times, in the case of the number of processes equal to 10,20,40,60,80,
100,120,140,160,192, respectively. Thus the results of 100 trials are given

Table 17 CPU time and percentage deviation from global optimum

Problem CPU time cost (s) Percentage deviation from global optimum

HSGTa HSGa SAa V5b HSGTa HSGa SAa V5

Mini Maxi

F8 2.39 1.30 5.89 3.81 292.14 0.00 0.02 0.45 0.00
F9 1.90 1.01 4.53 3.01 281.75 0.00 0.05 0.30 0.00
F10 4.45 1.17 5,33 3.62 428.56 0.30 35.95 0.07 0.00
F11 1.62 0.88 3.91 2.64 184.86 0.00 0.01 0.03 0.00
F12 5.67 1.44 7.09 3.65 216.18 30.00 1.05 0.40 0.00
F13 1.91 1.44 6.86 3.66 296.75 0.00 0.00 0.06 0.00
F14 2.26 1.38 6.96 3.69 269.78 0.00 0.00 0.18 0.00
F15 1.57 1.25 7.07 4.60 322.53 0.00 2.00 0.08 0.00
F16 2.40 1.01 4.10 2.89 207.49 2.37 11.73 2.40 0.00
F17 4.34 0.97 4.51 3.04 256.61 0.00 0.35 0.31 0.00
F18 11.37 0.35 3.58 2.68 197.29 0.00 2.76 0.00 0.00
F19 1.30 0.47 3.92 2.76 195.82 0.00 0.00 0.06 0.00
F20 1.59 1.11 4.94 3.09 203.90 0.00 4.22 0.11 0.00
F21 2.27 2.07 6.14 3.66 214.84 1.06 9.77 3.97 0.00
F22 3.48 3.31 7.53 6.50 227.16 4.61 14.28 14.62 0.00

a Results taken from Trafalis and Kasap [24]
b Because V5 was tested with different numbers of processes, maximum and minimum CPU time
costs are given by V5

We have done a group of experiments on the Beowulf PCs Cluster and are here
to randomly choose one of them and list experimental results in Table 18. In terms
of these results, it is obvious to note that the total CPU time originally used began
to decrease as CPUs were added, but after the number of CPUs reached around 40,
there was no significant change in the total CPU time. On the contrary, it began to
gradually increase as CPUs were added. In general, the time cost of a parallel program

284 J Glob Optim (2007) 39:261–289

Table 18 Performance measure data

Num. of CPUs Program Total CPU Relative speed-up Relative efficiency
execution time (s) time (s)

2 5506 10966.13 1 1
4 2572 10240.79 2.14 1.07
8 1011 7965.61 5.45 1.36
16 442 6620.83 12.46 1.56
24 329 6919.24 16.73 1.39
40 208 5494.18 26.47 1.32
80 224 6209.75 24.58 0.62
120 286 6697.64 19.25 0.32
160 362 6569.19 15.21 0.19

Table 19 Total communication and waiting time cost per CPU versus the number of CPUs used

Time (s) The number of CPUs used
2 4 8 10 20 40 80 120 160 192

Tcomm 0.01 0.01 0.07 0.06 0.11 0.20 0.48 2.01 2.25 4.10
Twait 45.14 115.88 207.11 235.61 455.94 909.96 1715.09 2628.08 3428.22 4619.24

Tcomm is the total communication time per CPU and Twait is the total waiting time cost per CPU

mainly consists of three parts, total CPU time, total communication time and total
waiting time. It is easy to get to know the total communication time that has to be
used because the algorithm needs to exchange data periodically. In addition, it is not
difficult to know the total waiting time that has to be used because all participating
processes in a parallel program need to be synchronized before communication can
be done. Here are a group data about communication and waiting time cost per CPU.
These results in Table 19 and Fig. 8 were obtained on our IBM Beowulf PCs Cluster.
As mentioned before, networking in our IBM Beowulf PCs cluster is accomplished
with Myrinet with full-duplex 2+ 2 Gigabit/second links. From the experimental data
given in Table 19, we can see that the total communication cost per CPU is very small
due to high-speed Myrinet networking. The time cost in communication per CPU can
almost be ignored compared to total waiting time cost. The above results also reveals
that the total communication and waiting time cost per CPU almost linearly increase
as the number of CPUs is added. However, the results revealed in Fig. 9 show that the
total CPU time cost parabolically changes with the number of CPUs used. Therefore
we think this is the cause that results in the effect revealing in Fig. 7.

In the light of the experimental results given in Table 18, Fig. 9 illustrates the rela-
tionship between total CPU time and the number of CPUs added, Fig. 10 illustrates
the relationship between relative speed-up and the number of CPUs used, and Fig. 11
illustrates the relationship between relative efficiency and the number of CPUs used.
Apparently, after the number of CPUs added reaches around 40, there is no avail-
able scalability. Simultaneously, relative efficiency is less than one, and this means
hardware resources of the high-performance computer are wasted. Therefore, the
experimental results revealed here deny the hypothesis that the bigger the number of
CPUs used, the better the performances of a parallel program.

J Glob Optim (2007) 39:261–289 285

Fig. 8 The relationship between total waiting time cost per CPU and the number of CPUs used

Fig. 9 The relationship between total CPU time and the number of CPUs used

4 Conclusions

The prohibitively long execution time of simulated annealing due to its sequential
nature hinders its application to realistically sized problems. A more efficient way
to reduce CPU time cost and make the SA a more promising method is to par-
allelize sequential simulated annealing based on high-performance computing. It is

286 J Glob Optim (2007) 39:261–289

Fig. 10 The relationship between relative speed-up and the number of CPUs used

Fig. 11 The relationship between relative efficiency and the number of CPUs used

a challenging task. In fact, there are many approaches that may be considered in
parallelizing SA. However, an inappropriate strategy used will likely result in poor
performance.

In this paper, we have used five different considerations to do this work. From the
experimental results, we eventually found out that the traditional approach to paralle-
lizing simulated annealing, namely parallelizing moves in sequential SA (here V2 and

J Glob Optim (2007) 39:261–289 287

V3 belong to this situation), had difficulty in handling the very large problem instances.
A divide-and-conquer decomposition strategy used for searching space (here V1
belongs to this case) sometimes might find the global minimum, but it leads to long
time cost once the random search space was considerably expanded. The most effec-
tive way we found to identify the global optimum solution was to introduce genetic
algorithm (GA) and build a GA + SA highly hybrid algorithm (here V5 belongs to
this case). In this approach, GA was applied to each cooling temperature stage. Some
comparisons of the performance of V5 have been made with some recent global
optimization algorithms in terms of the number of functional evaluations needed to
obtain a global minimum, success rate and solution quality. Results show that V5, the
best of the proposed algorithms, outperforms other algorithms used. Additionally,
further performance analyses on V5 itself in total CPU time cost, relative speed-up
and efficiency amply show that the scalability of a parallel program is limited and the
expectation of always being able to increase speedup is not practical. This point seems
to suggest that there is no need to increasingly add CPUs. However, in fact, a tradeoff
between capacity and efficiency exists. As shown by the experimental results in Sect.
3.2, particularly for those extremely difficult function optimization problems, if the
efficiency is not the mainly concerned problem, parallel algorithms running with the
bigger number of CPUs potentially yields more opportunities to find or come close
to global optimal solutions.

Acknowledgements Authors gratefully acknowledge the constructive criticism and comments of the
reviewers that helped in improving the content of this paper notably. In addition, this research work
was ever supported by Brain Korea 21 Project, the school of information technology, KAIST in 0000.

Appendix A

Function 1, 2, and 3 (N-D): D-dimensional nowhere-differentiable test function: Xi ∈
[±1000, ±1000]∀i. This function has infinite number of local minima and one global
minimum and the global objective function value is 1.

f (x) = N
�

k=1

⎛

⎝1+ k
β∑

n=0

∣∣2nxk −
⌊

2kxk
⌋∣∣

2n

⎞

⎠ ,

where β = ∞. In our test experiments, β = 30, and N = 10, 15, or 20.
Function 4, 5, 6, and 7 (N-D): Modified Griewank test function: Xi ∈ [±600, ±600]∀i.
This function has a very large number of local minima, exponentially increasing with
N. It has one global minimum value 0.

f (x) =
N∑

i=1

x2
i

4, 000
− N

�
i=1

(
2+ cos

(
xi√

i

))
+ 3N .

In our test experiments, N = 2, 4, 6, or 8.
Function 8 (2-D): Goldstein and Price’s function: Xi ∈ [±2, ±2]∀i. There are four
local minima and the global objective function value is 3.

f (x) = [1+ (x1 + x2 + 1)2(19− 14x1 + 3x2 − 14x2 + 6x1x23x2
2)]

[30+ (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)].

288 J Glob Optim (2007) 39:261–289

Function 9 (2-D): Himmelblau’s function: Xi ∈ [±6, ±6]∀i. There are four global
minima with an objective function value of 0.

f (x) =
(

x2
1 + x2 − 11

)2 +
(

x1 + x2
2 − 7

)2
.

Function 10 (2-D): Shubert function: Xi ∈ [±20, ±20]∀i. This function has more than
760 local minima and more than 18 global minima with an objective function value of
−186.7309.

f (x) =
⎧
⎨

⎩

5∑

i=1

i cos[(i+ 1)x1 + i]
⎫
⎬

⎭

⎧
⎨

⎩

5∑

i=1

i cos[(i+ 1)x2 + i]
⎫
⎬

⎭
.

Function 11 (2-D): General test function: Xi ∈ [±5, ±5]∀i. This function has several
local minima with an objective function value of 0.

f (x) = 0.5x2
1 + 0.5[1− cos(2x1)] + x2

2.

Function 12, 13,14, and 15 (2-D): General test function: Xi ∈ [±5, ±5]∀i for functions
12 and 13, and Xi ∈ [±20, ±20]∀i for functions 14 and 15. These functions have more
than three local minima and two global minima.

f (x) = 10nx2
1 + x2

2 − (x2
1 + x2

2)
2 + 10m(x2

1 + x2
2)

4, n = −m.

For n = 1, n = 2, n = 3 and n = 4, global object function values are −0.407461,
−18.058697, 227.765747, and −2429.414749 respectively.
Function 16 (2-D): Rastrigin function: Xi ∈ [±5, ±5]∀i. This function has 50 local
minima and one global minimum with an objective function value of −2.

f (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2).

Function 17 (2-D): Branin function: Xi ∈ [±20, ±20]∀i. This function has more than
three local and global minima with an objective function value of 0.397887.

f (x) = (x2 − 5.1x2
1/4π2 + 5x1/π − 6)2 + 10(1− 1/(8π)) cos x1 + 10.

Function 18 (1-D): General test function: Xi ∈ [±20, ±20]∀i. This function has 38
local minima and 7 global minima with an objective function value of −3.372897.

f (x) = −
⎧
⎨

⎩

5∑

i=1

sin[(i+ 1)x+ i]
⎫
⎬

⎭
.

Function 19 (2-D): Rosenbrock’s function: Xi ∈ [±2, ±2]∀i. There is a unique global
minimum with an objective function value of 0.

f (x) = 100(x2 − x2
1)

2 + (1− x1)
2.

Function 20, 21 and 22(N-D): General test function: Xi ∈ [±20, ±20]∀i. This function
has 2N local minima and one global minimum. The global objective function values
are −78.332331, −117.4984, and −156.66466 for N equal 2,3, and 4, respectively.

f (x̄) = (1/2)

N∑

j=1

(
x4

j − 16x2
j + 5xj

)
.

J Glob Optim (2007) 39:261–289 289

References

1. Wah, B.W., Chang, Y.-J.: Trace-based methods for solving nonlinear global optimization prob-
lems. J. Global Optimiz. 10(2), 107–141 (1997)

2. Szu, H., Hartley, R.: Fast simulated annealing. Phys. Lett. A. 122, 157–162 (1987)
3. Rosen, B.E.: GA’s and very fast simulated reannealing. Genetic Algorithms Digest 5(36), (1991)

An Electronic Journal
4. Ingber, L., Rosen, B.: Very fast simulated reannealing (VFSR), netlib@research.att.com:/net-

lib/opt/vfsr.Z, AT&T Bell labs, Murray Hill, NJ (1992)
5. Ingber, L.: Simulated annealing: practice versus theory. J. Math. Comput. Model 18(11), 29–

57 (1994)
6. Siarry, P., Berthiau, G., Durbin, F., Haussy, J.: Enhanced simulated annealing for globally minimiz-

ing functions of many-continuous variables. ACM Trans. Math. Software 23(2), 209–228 (1997)
7. Ellen, E.W., Roger, D.C., Mark, A.F.: Parallel simulated annealing using speculative computa-

tion. IEEE Trans. Parallel Distribut Syst. 2(4), 483–494 (1991)
8. Hamma, B.S., Viitanen, S., Torn, A.: Parallel continuous simulated annealing for global optimiza-

tion. Presented at the NATO Advance Study Institute – Algorithms for Continuous Optimization:
The State of the Art, II Ciocco-castelvecchio Pascoli, Italy (1993)

9. Yong, L., lishan, K., Evans, D.J.: The annealing evolution algorithm as function optimizer. Parallel
Computing 21(3), 389–400 (1995)

10. Chen, H., Flann, N.S., Watson, D.W.: Parallel genetic simulated annealing: a massively parallel
SIMD algorithm. IEEE Trans. Parallel Distribut Syst. 9, 126–136 (1998)

11. Esin, O., Linet, O.: Parallel simulated annealing algorithms in global optimization. J. Global
Optimiz. 19, 27–50 (2001)

12. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state
calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

13. Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by simulated annealing, science
220(4598), 671–680 (1983)

14. Kimura, K., Taki, K.: Time-homogeneous parallel annealing algorithm. Report TR-673, Institute
for New Generation Computer Technology, Tokyo, Japan (1991)

15. Mahfoud, S.W., Goldberg, D.E.: Parallel recombinative simulated annealing :a genetic algorithm.
IlliGAL Report No. 92002, University of Illinois, Urbana, IL (1992)

16. Ter Laak, A., Hertzberger, L.O., Sloot, P.M.A.: Nonconvex continuous optimization experiments
on a transputer system. In: Allen, A. (ed.) Transputer Systems-Ongoing Research, pp. 251–
265. IOS Press, Amsterdam (1992)

17. http://www.mcs.anl.gov/mpi/mpich and http://www.mpi-forum.org
18. Korf, R.E.: Linear-space best-first search. Artif. Intell. 62, 41–78 (1993)
19. Pardalos, P.M., Rosen, J.B.: Constrained Global Optimization: Algorithms and Applications

Vol. 268 of Lecture Notes in Computer Science. Springer-Verlag, Berlin (1987)
20. Parker, R.G., Rardin, R.L.: Discrete Optimization. Academic Press Inc., San Diego, CA (1988)
21. Kennedy, J., Eberhart, R.C.: Swarm intelligence. Morgan Kaufmann Publishers, Los Altos (2001)
22. Torn, A., Zilinskas, A.: Global optimization. Springer-Verlag, Berlin (1989)
23. Cetin, B.C., Barhen, J., Burdick, W.: Terminal Pepeller unconstrained subenergy tunneling

(TRUST) for fast global optimization. J. Optimiz. Theory Appl. 77(1), 97–127 (1993)
24. Theodore, B.T., Suat, K.: A novel metaheuristics approach for continuous global optimization. J.

Global Optimiz. 23, 171–190 (2002)
25. Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal functions of continu-

ous variables with the simulated annealing algorithm. ACM Trans. Math. Software 13(3), 262–
279 (1987)

26. Cem, B.: A hybrid parallel simulated annealing algorithm to optimize store performance. Pro-
ceedings of Workshop on Evolutionary Computing for Optimisation in Industry at the Genetic
and Evolutionary Computation Conference (GECCO-2002), 9 July 2002, New York (2002)

27. Hussain, M.F., Al-sultan, K.S.: A hybrid genetic algorithm for nonconvex function minimiza-
tion. J. Global Optimiz. 11, 313–324 (1997)

28. Alan, H.K., Horace, P.F.: Measuring parallel processor performance. Commun. ACM. 33(5), 539–
543 (1990)

	Parallelizing simulated annealing algorithms basedon high-performance computer
	Abstract
	Introduction
	Parallelizing simulated annealing
	Strategies used for parallelizing SA
	Detailed descriptions of five approaches
	Experimental results and performance analysis
	A sample test problem
	Increasing search space dimensions
	Increasing parameter interval
	More tests for checking the generality of the five approaches
	Comparisons with other global optimization methods
	The number of function evaluations needed for each method
	Success rate and optimum solution quality
	Further performance analyses
	Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

